Journal of Macrofungi Logo

Journal of Macrofungi


Volume 1, Issue 1 (2025), Pages: 14-29

Immunomodulatory Effects of Ganoderma lucidum on NK Cells: From Traditional Use to Modern Immunotherapy

Ahmed Farhan SHALLAL
Department of Biology, College of Science, University of Raparin, Sulaymaniyah, Kurdistan Region, Iraq

Chawan Hazhar RAZAQ
Department of Biology, College of Science, University of Raparin, Sulaymaniyah, Kurdistan Region, Iraq

Mustafa Nadhim OWAID
Department of Environmental Sciences, College of Applied Sciences-Heet, University Of Anbar, Hit, Anbar, Iraq. Department of Heet Education, General Directorate of Education in Anbar, Ministry of Education, Hit, Anbar, Iraq

Received: 2025-08-23 Revised: 2025-10-03 Accepted: 2025-10-05 Published: 2025-10-08


ABSTRACT

The historical importance of Ganoderma lucidum is noteworthy within traditional Asian medical systems. This thorough investigation examines the immunomodulatory properties of G. lucidum, specifically its role in modulating natural killer (NK) cells, which are crucial components of the immune response against infectious pathogens and tumors. The primary constituents of G. lucidum, which include polysaccharides and triterpenoids, have been demonstrated to enhance the cytotoxic capabilities of NK cells and stimulate cytokine synthesis. The chemical substances enhance the activation of NK cell receptors, particularly NKG2D and natural cytotoxicity receptors, thereby commencing a chain of intracellular signaling pathways that strengthen the immune response. Furthermore, the significance of G. lucidum within the framework of cancer immunotherapy is examined, highlighting its potential to induce apoptosis in cancerous cells, impede angiogenesis, and improve the effectiveness of standard therapeutic modalities. The exploration of properties of G. lucidum reveals its multifaceted role in cancer treatment, particularly in augmenting the immune system's capacity to combat malignancies and enhance therapeutic outcomes. The analysis further highlights the antiviral and anti-inflammatory properties of G. lucidum, specifically its ability to modulate immune responses within the context of viral infections and chronic inflammatory conditions. A deeper understanding of the underlying molecular mechanisms is crucial for the effective integration of G. lucidum into contemporary therapeutic frameworks. This review provides a comprehensive examination of the existing research on the immunomodulatory properties of G. lucidum and its therapeutic potential in oncology, viral infections, and inflammatory conditions, while also exploring prospective avenues for further investigation and clinical application.

Keywords: Biological aspects, Health, Immune modulation, Infections, Reishi mushroom.

Download PDF Downloads: (1) Views: (12) XML Open Access

Cite:

SHALLAL, Ahmed Farhan , RAZAQ, Chawan Hazhar , & OWAID, Mustafa Nadhim (2025). Immunomodulatory Effects of Ganoderma lucidum on NK Cells: From Traditional Use to Modern Immunotherapy. Journal of Macrofungi, 1(1): 14-29.


REFERENCES

Ahmad, M.F. (2019). Ganoderma lucidum: A macro fungus with phytochemicals and their pharmacological properties. Plant and Human Health, Volume 2: Phytochemistry and Molecular Aspects, Springer. 491–515. https://doi.org/10.1007/978-3-030-03344-6_21
Ahmad, M.F., Ahmad, F.A., Hasan, N., Alsayegh, A.A., Hakami, O., Bantun, F., Tasneem, S., Alamier, W.M., Babalghith, A.O., & Aldairi, A.F. (2024a). Ganoderma lucidum: Multifaceted mechanisms to combat diabetes through polysaccharides and triterpenoids: A comprehensive review. International Journal of Biological Macromolecules 268, 131644. https://doi.org/10.1016/j.ijbiomac.2024.131644
Ahmad, M.F., Ahmad, F.A., Khan, M.I., Alsayegh, A.A., Wahab, S., Alam, M.I., & Ahmed, F. (2021). Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. International Journal of Biological Macromolecules 187,769–779. https://doi.org/10.1016/j.ijbiomac.2021.06.122
Ahmad, M.F., Ahmad, F.A., Zeyaullah, M., Alsayegh, A.A., Mahmood, S.E., Alshahrani, A.M., Khan, M.S., Shama, E., Hamouda, A., & Elbendary, E.Y. (2023). Ganoderma lucidum: Novel insight into hepatoprotective potential with mechanisms of action. Nutrients 15,1874. https://doi.org/10.3390/nu15081874
Ahmad, M.F., Alsayegh, A.A., Ahmad, F.A., Akhtar, M.S., Alavudeen, S.S., Bantun, F., Wahab, S., Ahmed, A., Ali, M., & Elbendary, E.Y. (2024b). Ganoderma lucidum: Insight into antimicrobial and antioxidant properties with development of secondary metabolites. Heliyon 10(3),e25607. https://doi.org/10.1016/j.heliyon.2024.e25607
Alter, G., Malenfant, J.M., & Altfeld, M. (2004). CD107a as a functional marker for the identification of natural killer cell activity. Journal of Immunological Methods 294(1-2),15–22. https://doi.org/10.1016/j.jim.2004.08.008
Antonelli, A., Smith, R.J., Fry, C., Simmonds, M.S.J., Paul J Kersey, P.J., et al. (2020). State of the World’s Plants and Fungi. [Research Report] Royal Botanic Gardens (Kew); Sfumato Foundation.id: hal-02957519
Arunachalam, K., Sasidharan, S.P., & Yang, X. (2022). A concise review of mushrooms antiviral and immunomodulatory properties that may combat against COVID-19. Food Chemistry Advances 1,100023. https://doi.org/10.1016/j.focha.2022.100023
Azi, F., Wang, Z., Chen, W., Lin, D., & Xu, P. (2024). Developing Ganoderma lucidum as a next-generation cell factory for food and nutraceuticals. Trends in Biotechnology 42(2),197–211.https://doi.org/10.1016/j.tibtech.2023.07.008
Baby, S., Johnson, A.J., & Govindan, B. (2015). Secondary metabolites from Ganoderma. Phytochemistry 114,66–101. https://doi.org/10.1016/j.phytochem.2015.03.010
Baginska, J., Viry, E., Paggetti, J., Medves, S., Berchem, G., Moussay, E., & Janji, B. (2013). The critical role of the tumor microenvironment in shaping natural killer cell-mediated antitumor immunity. Frontiers in Immunology 4,490. https://doi.org/10.3389/fimmu.2013.00490
Balsamo, M., Scordamaglia, F., Pietra, G., Manzini, C., Cantoni, C., Boitano, M., Queirolo, P., Vermi, W., Facchetti, F., & Moretta, A. (2009). Melanoma-associated fibroblasts modulate NK cell phenotype and antitumor cytotoxicity. Proceedings of the National Academy of Sciences 106(49),20847–20852. https://doi.org/10.1073/pnas.0906481106
Barber, A., & Sentman, C.L. (2011). NKG2D receptor regulates human effector T-cell cytokine production. Blood 117(24), 6571–6581. https://doi.org/10.1182/blood-2011-01-329417
Behl, T., Kumar, K., Brisc, C., Rus, M., Nistor-Cseppento, D. C., Bustea, C., Aron, R.A.C., Pantis, C., Zengin, G., & Sehgal, A. (2021). Exploring the multifocal role of phytochemicals as immunomodulators. Biomedicine & Pharmacotherapy 133,110959. https://doi.org/10.1016/j.biopha.2020.110959
Bessoles, S., Grandclément, C., Alari-Pahissa, E., Gehrig, J., Jeevan-Raj, B., & Held, W. (2014). Adaptations of natural killer cells to self-MHC class I. Frontiers in Immunology 5,349. https://doi.org/10.3389/fimmu.2014.00349
Cao, Y., Wu, S.-H., & Dai, Y.-C. (2012). Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Diversity 56,49-62. https://doi.org/10.1007/s13225-012-0178-5
Cerwenka, A., & Lanier, L.L. (2001). Natural killer cells, viruses and cancer. Nature Reviews Immunology 1,41–49. https://doi.org/10.1038/35095564
Chan, W.K., Cheung, C.C. H., Law, H.K.W., Lau, Y.L., & Chan, G.C.F. (2008). Ganoderma lucidum polysaccharides can induce human monocytic leukemia cells into dendritic cells with immuno-stimulatory function. Journal of Hematology & Oncology 1,9. https://doi.org/10.1186/1756-8722-1-9
Chang, C.-J., Chen, Y.-Y. M., Lu, C.-C., Lin, C.-S., Martel, J., Tsai, S.-H., Ko, Y.-F., Huang, T.-T., Ojcius, D.M., & Young, J.D. (2014). Ganoderma lucidum stimulates NK cell cytotoxicity by inducing NKG2D/NCR activation and secretion of perforin and granulysin. Innate Immunity 20,301–311. https://doi.org/10.1177/1753425913491789
Chen, S., Guan, X., Yong, T., Gao, X., Xiao, C., Xie, Y., Chen, D., Hu, H., & Wu, Q. (2022). Structural characterization and hepatoprotective activity of an acidic polysaccharide from Ganoderma lucidum. Food Chemistry: X 13,100204. https://doi.org/10.1016/j.fochx.2022.100204
Chen, S., Yong, T., Zhang, Y., Su, J., Jiao, C., & Xie, Y. (2017). Antitumor and anti-angiogenic ergosterols from Ganoderma lucidum. Frontiers in Chemistry 5,85. https://doi.org/10.3389/fchem.2017.00085
Cör Andrejč, D., Knez, Ž., & Knez Marevci, M. (2022). Antioxidant, antibacterial, antitumor, antifungal, antiviral, an-ti-inflammatory, and neuro-protective activity of Ganoderma lucidum: An overview. Frontiers in Pharmacology 13,934982. https://doi.org/10.3389/fphar.2022.934982
Cortina-Escribano, M., Veteli, P., Linnakoski, R., Miina, J., & Vanhanen, H. (2020). Effect of wood residues on the growth of Ganoderma lucidum. Karstenia 58(1),16-28.https://doi.org/10.29203/ka.2020.486
Das, B., De, B., Chetree, R., & Mandal, S.C. (2019). Medicinal aspect of mushrooms: A view point. Herbal Medicine in India: Indigenous Knowledge, Practice, Innovation and its Value. Springer. pp 509–532 . https://doi.org/10.1007/978-981-13-7248-3_31
De Camargo, M.R., Frazon, T.F., Inácio, K.K., Smiderle, F.R., Amôr, N.G., Dionísio, T.J., Santos, C.F., Rodini, C.O., & Lara, V.S. (2022). Ganoderma lucidum polysaccharides inhibit in vitro tumorigenesis, cancer stem cell properties and epithelial-mesenchymal transition in oral squamous cell carcinoma. Journal of Ethnopharmacology 286,114891. https://doi.org/10.1016/j.jep.2021.114891
De Saint Basile, G., Ménaché, G., & Fischer, A. (2010). Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nature Reviews Immunology 10,568–579. https://doi.org/10.1038/nri2803
Demaria, O., Cornén, S., Daëron, M., Morel, Y., Medzhitov, R., & Vivier, E. (2019). Harnessing innate immunity in cancer therapy. Nature 574,45–56. https://doi.org/10.1038/s41586-019-1593-5
Dudhgaonkar, S., Thyagarajan, A., & Sliva, D. (2009). Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. International Immunopharmacology 9(11),1272–1280. https://doi.org/10.1016/j.intimp.2009.07.011
Elboim, M., Gazit, R., Gur, C., Ghadially, H., Betser-Cohen, G., & Mandelboim, O. (2010). Tumor immunoediting by NKp46. The Journal of Immunology 184(10),5637–5644.
Elhaik-Goldman, S., Kafka, D., Yossef, R., Hadad, U., Elkabets, M., Vallon-Eberhard, A., Hulihel, L., Jung, S., Ghadially, H., & Braiman, A. (2011). The natural cytotoxicity receptor 1 contribution to early clearance of Streptococcus pneumoniae and to natural killer-macrophage cross talk. PloS One 6,e23472. https://doi.org/10.1371/journal.pone.0023472
Gao, X., & Homayoonfal, M. (2023). Exploring the anticancer potential of Ganoderma lucidum polysaccharides (GLPs) and their versatile role in enhancing drug delivery systems: A multifaceted approach to combat cancer. Cancer Cell International 23,324. https://doi.org/10.1186/s12935-023-03146-8
Gao, Y., Tang, W., Gao, H., Chan, E., Lan, J., Li, X., & Zhou, S. (2005). Antimicrobial activity of the medicinal mushroom Ganoderma. Food Reviews International 21,211–229. https://doi.org/10.1081/FRI-200051893
Gündoğdu, S., & Özenver, N. (2023). Anticancer potential of Ganoderma lucidum and its underlying mechanisms. Mushrooms with Therapeutic Potentials: Recent Advances in Research and Development. Springer, pp 221–240. https://doi.org/10.1007/978-981-19-9550-7_7
Hammer, Q., Rückert, T., Borst, E. M., Dunst, J., Haubner, A., Durek, P., Heinrich, F., Gasparoni, G., Babić, M., & Tomić, A. (2018). Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nature Immunology 19,453–463. https://doi.org/10.1038/s41590-018-0082-6
Han, X., Wang, P., Xiao, Y., Zheng, Y., Tian, S., Tan, M., Yuan, M., Huang, L., Hu, Y., & Xie, X. (2024). Study on the Astringency Mechanism of Triphala. Available at SSRN 5052370. https://doi.org/10.2139/ssrn.5052370
Hapurachchi, K., Wen, T., Deng, C., Kang, J., & Hyde, K. (2015). Mycosphere essays 1: Taxonomic confusion in the Ganoderma lucidum species complex. Mycosphere 6,542–559. https://doi.org/10.5943/mycosphere/6/5/4
Hapurachchi, K., Wen, T., Jeewon, R., Wu, X., & Kang, J. (2016). Mycosphere Essays 15. Ganoderma lucidum—are the beneficial medical properties substantiated? Mycosphere 7,687–715. https://doi.org/10.5943/mycosphere/7/6/1
Hashimoto, W., Osaki, T., Okamura, H., Robbins, P.D., Kurimoto, M., Nagata, S., Lotze, M.T., & Tahara, H. (1999). Differential antitumor effects of administration of recombinant IL-18 or recombinant IL-12 are mediated primarily by Fas-Fas ligand-and perforin-induced tumor apoptosis, respectively. The Journal of Immunology 163,583–589.
Hooda, P., Malik, R., Bhatia, S., Al-Harrasi, A., Najmi, A., Zoghebi, K., Halawi, M.A., Makeen, H.A., & Mohan, S. (2024). Phytoimmunomodulators: A review of natural modulators for complex immune system. Heliyon 10(1),e23790. https://doi.org/10.1016/j.heliyon.2023.e23790
Huang, S., Mao, J., Ding, K., Zhou, Y., Zeng, X., Yang, W., Wang, P., Zhao, C., Yao, J., & Xia, P. (2017). Polysaccharides from Ganoderma lucidum promote cognitive function and neural progenitor proliferation in mouse model of Alzheimer's disease. Stem Cell Reports, 8, 84–94. https://doi.org/10.1016/j.stemcr.2016.12.007
Iannello, A., Thompson, T.W., Ardolino, M., Lowe, S.W., & Raulet, D.H. (2013). p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. Journal of Experimental Medicine 210,2057–2069. https://doi.org/10.1084/jem.20130783
Jiang, L., Huang, J., Lu, J., Hu, S., Pei, S., Ouyang, Y., Ding, Y., Hu, Y., Kang, L., & Huang, L. (2019). Ganoderma lucidum poly-saccharide reduces melanogenesis by inhibiting the paracrine effects of keratinocytes and fibroblasts via IL‐6/STAT3/FGF2 pathway. Journal of Cellular Physiology 234,22799–22808. https://doi.org/10.1002/jcp.28844
Jin, H., Song, C., Zhao, Z., & Zhou, G. (2020). Ganoderma lucidum polysaccharide, an extract from Ganoderma lucidum, exerts suppressive effect on cervical cancer cell malignancy through mitigating epithelial-mesenchymal and JAK/STAT5 signaling pathway. Pharmacology 105(7-8),461–470. https://doi.org/10.1159/000505461
Jing, Y.-S., Ma, Y.-F., Pan, F.-B., Li, M.-S., Zheng, Y.-G., Wu, L.-F., & Zhang, D.-S. (2022). An insight into antihyperlipidemic effects of polysaccharides from natural resources. Molecules 27(6),1903. https://doi.org/10.3390/molecules27061903
Karimi, M., Raofie, F., & Karimi, M. (2022). Production Ganoderma lucidum extract nanoparticles by expansion of supercritical fluid solution and evaluation of the antioxidant ability. Scientific Reports 12,9904. https://doi.org/10.1038/s41598-022-13727-8
Karunarathna, S.C., Patabendige, N. M., Luangharn, T., & Hapurachchi, K. K. (2025). Ganodermataceae—current status, research, and development in Lower Mekong Basin. Frontiers in Cellular and Infection Microbiology, 15, 1545135. https://doi.org/10.3389/fcimb.2025.1545135
Kohno, T., Hai-Bang, T., Zhu, Q., Amen, Y., Sakamoto, S., Tanaka, H., Morimoto, S., & Shimizu, K. (2017). Tubulin polymeriza-tion-stimulating activity of Ganoderma triterpenoids. Journal of Natural Medicines 71,457–462. https://doi.org/10.1007/s11418-017-1072-y
Kozarski, M., Klaus, A., Jakovljević, D., Todorović, N., Wan, W.A.A.Q.I., & Nikšić, M. (2019). Ganoderma lucidum as a cosmeceutical: Antiradical potential and inhibitory effect on hyperpigmentation and skin extracellular matrix degradation en-zymes. Archives of Biological Sciences 71(2),253–264. https://doi.org/10.2298/ABS181217007K
Kumar, D., Arya, V., Kaur, R., Bhat, Z.A., Gupta, V.K., & Kumar, V. (2012). A review of immunomodulators in the Indian traditional health care system. Journal of Microbiology, Immunology and Infection 45(3),165–184. https://doi.org/10.1016/j.jmii.2011.09.030
Lanier, L.L. (2005). NK cell recognition. Annual Review of Immunology 23,225–274. https://doi.org/10.1146/annurev.immunol.23.021704.115526
Lehrnbecher, T., Fisher, B.T., Phillips, B., Beauchemin, M., Carlesse, F., Castagnola, E., Duong, N., Dupuis, L.L., Fioravanti, V., & Groll, A.H. (2020). Clinical practice guideline for systemic antifungal prophylaxis in pediatric patients with cancer and hematopoietic stem-cell transplantation recipients. Journal of Clinical Oncology 38(27),3205–3216. https://doi.org/10.1200/JCO.20.00158
Li, Y., Wang, Q., & Mariuzza, R.A. (2011). Structure of the human activating natural cytotoxicity receptor NKp30 bound to its tumor cell ligand B7-H6. Journal of Experimental Medicine 208(4),703-714. https://doi.org/10.1084/jem.20102548
Ljunggren, H. G., & Kärre, K. (1985). Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. The Journal of Experimental Medicine 162(6),1745–1759. https://doi.org/10.1084/jem.162.6.1745
Lodoen, M.B., & Lanier, L.L. (2006). Natural killer cells as an initial defense against pathogens. Current Opinion in Immunology 18(4),391–398. https://doi.org/10.1016/j.coi.2006.05.002
Lu, C.C., & Chen, J.K. (2010). Resveratrol enhances perforin expression and NK cell cytotoxicity through NKG2D‐dependent pathways. Journal of Cellular Physiology 223,343–351. https://doi.org/10.1002/jcp.22043
Lugini, L., Cecchetti, S., Huber, V., Luciani, F., Macchia, G., Spadaro, F., Paris, L., Abalsamo, L., Colone, M., & Molinari, A. (2012). Immune surveillance properties of human NK cell-derived exosomes. The Journal of Immunology 189(6),2833–2842. https://doi.org/10.4049/jimmunol.1101988
Luo, H., Tan, D., Peng, B., Zhang, S., Vong, C.T., Yang, Z., Wang, Y., & Lin, Z. (2022). The pharmacological rationales and molecular mechanisms of Ganoderma lucidum polysaccharides for the therapeutic applications of multiple diseases. The American Journal of Chinese Medicine 50(1),53–90. https://doi.org/10.1142/S0192415X22500033
Luo, Y., Luo, X., Xue, Z., Wu, M., Chen, Q., & Jin, L. (2024). Exploring the anti-lung cancer mechanism of Ganoderma lucidum and its relationship with the level of immune cell infiltration based on network pharmacology and molecular docking. Oncologie 26,831–843. https://doi.org/10.1515/oncologie-2024-0194
Ma, Y., Han, J., Wang, K., Han, H., Hu, Y., Li, H., Wu, S., & Zhang, L. (2024). Research progress of Ganoderma lucidum polysaccharide in prevention and treatment of atherosclerosis. Heliyon 10(12),e33307. https://doi.org/10.1016/j.heliyon.2024.e33307
Maghazachi, A.A. (2005). Insights into seven and single transmembrane-spanning domain receptors and their signaling pathways in human natural killer cells. Pharmacological Reviews 57(3),339–357. https://doi.org/10.1124/pr.57.3.5
Martínez-Lostao, L., Anel, A., & Pardo, J. (2015). How do cytotoxic lymphocytes kill cancer cells? Clinical Cancer Research 21(22),5047–5056. https://doi.org/10.1158/1078-0432.CCR-15-0685
Massee, G. (1904). A monograph of the genus Inocybe, Karsten. Annals of Botany 18(71),459–504.
Meng, M., Wang, L., Yao, Y., Lin, D., Wang, C., Yao, J., Sun, H., & Liu, M. (2023). Ganoderma lucidum polysaccharide peptide (GLPP) attenuates rheumatic arthritis in rats through inactivating NF-κB and MAPK signaling pathways. Phytomedicine 119,155010. https://doi.org/10.1016/j.phymed.2023.155010
Nouroz, F., Bibi, F., Noreen, S., & Masood, N. (2016). Natural killer cells enhance the immune surveillance of cancer. Egyptian Journal of Medical Human Genetics 17(2),149–154. http://dx.doi.org/10.1016/j.ejmhg.2015.08.006
O'Sullivan, T., Sadda, R., Vermi, W., Koebel, C.M., Arthur, C., White, J.M., Uppaluri, R., Andrews, D.M., Ngiow, S.F., & Teng, M.W. (2012). Cancer immunoediting by the innate immune system in the absence of adaptive immunity. Journal of Experimental Medicine 209,1869–1882. https://doi.org/10.1084/jem.20112738
Pardo, J., Balkow, S., Anel, A., & Simon, M.M. (2002). Granzymes are essential for natural killer cell‐mediated and perforin-facilitated tumor control. European Journal of Immunology 32(10),2881–2886. https://doi.org/10.1002/1521-4141(2002010)32:10%3C2881::aid-immu2881%3E3.0.co;2-k
Parepalli, Y., Chavali, M., Sami, R., Khojah, E., Elhakem, A., Askary, A.E., Singh, M., Sinha, S., & El-Chaghaby, G. (2021). Evaluation of some active nutrients, biological compounds and health benefits of reishi mushroom (Ganoderma lucidum). International Journal of Pharmacology 17(4),243–250. https://doi.org/10.3923/ijp.2021.243.250
Pascale, C., Sirbu, R., & Cadar, E. (2022). Importance of bioactive compounds of Ganoderma lucidum extract in medical field. European Journal of Medicine and Natural Sciences 6(1),116–124. http://dx.doi.org/10.26417/549xqp57
Paterson, R.R.M. (2006). Ganoderma a therapeutic fungal biofactory. Phytochemistry 67(18),1985–2001. https://doi.org/10.1016/j.phytochem.2006.07.004
Paul, S., & Lal, G. (2017). The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Frontiers in Immunology 8,1124. https://doi.org/10.3389/fimmu.2017.01124
Paul, S., Kulkarni, N., Shilpi, & Lal, G. (2016). Intratumoral natural killer cells show reduced effector and cytolytic properties and control the differentiation of effector Th1 cells. Oncoimmunology 5,e1235106. https://doi.org/10.1080/2162402x.2016.1235106
Paust, S., Gill, H.S., Wang, B.-Z., Flynn, M.P., Moseman, E.A., Senman, B., Szczepanik, M., Telenti, A., Askenase, P.W., & Compans, R.W. (2010). Critical role for the chemokine receptor CXCR6 in NK cell–mediated antigen-specific memory of haptens and viruses. Nature Immunology 11,1127-1135. https://doi.org/10.1038/ni.1953
Peng, Y., Zhang, L., Zeng, F., & Kennedy, J.F. (2005). Structure and antitumor activities of the water-soluble polysaccharides from Ganoderma tsugae mycelium. Carbohydrate Polymers 59(3),385-392. http://dx.doi.org/10.1016/j.carbpol.2004.10.009
Pietra, G., Manzini, C., Rivara, S., Vitale, M., Cantoni, C., Petretto, A., Balsamo, M., Conte, R., Benelli, R., & Minghelli, S. (2012). Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity. Cancer Research 72(6),1407–1415. https://doi.org/10.1158/0008-5472.can-11-2544
Richter, C., Wittstein, K., Kirk, P.M., & Stadler, M. (2015). An assessment of the taxonomy and chemotaxonomy of Ganoderma. Fungal Diversity 71,1–15. http://dx.doi.org/10.1007/s13225-014-0313-6
Rowaiye, A., Wilfred, O., Onuh, O., Bur, D., Oni, S., Nwonu, E., Ibeanu, G., Oli, A., & Wood, T. (2022). Modulatory effects of mushrooms on the inflammatory signaling pathways and pro-inflammatory mediators. Clinical Complementary Medicine and Pharmacology 2(4),100037. https://doi.org/10.1016/j.ccmp.2022.100037
Sanodiya, B.S., Thakur, G.S., Baghel, R.K., Prasad, G., & Bisen, P. (2009). Ganoderma lucidum: A potent pharmacological macro-fungus. Current Pharmaceutical Biotechnology 10(8),717–742. https://doi.org/10.2174/138920109789978757
Sconocchia, G., Eppenberger, S., Spagnoli, G.C., Tornillo, L., Droeser, R., Caratelli, S., Ferrelli, F., Coppola, A., Arriga, R., & Lauro, D. (2014). NK cells and T cells cooperate during the clinical course of colorectal cancer. Oncoimmunology 3,e952197. https://doi.org/10.4161/21624011.2014.952197
Shao, W., Xiao, C., Yong, T., Zhang, Y., Hu, H., Xie, T., Liu, R., Huang, L., Li, X., & Xie, Y. (2022). A polysaccharide isolated from Ganoderma lucidum ameliorates hyperglycemia through modulating gut microbiota in type 2 diabetic mice. International Journal of Biological Macromolecules 197,23–38. https://doi.org/10.1016/j.ijbiomac.2021.12.034
Sharma, C., Bhardwaj, N., Sharma, A., Tuli, H.S., Batra, P., Beniwal, V., Gupta, G.K., & Sharma, A.K. (2019). Bioactive metabolites of Ganoderma lucidum: Factors, mechanism and broad spectrum therapeutic potential. Journal of Herbal Medicine 17-18,100268. https://doi.org/10.1016/j.hermed.2019.100268
Sharrock, J. (2019). Natural killer cells and their role in immunity. EMJ Allergy Immunol 4,108–116. https://doi.org/10.33590/emjallergyimmunol/10311326
Shoae-Hassani, A., Hamidieh, A.A., Behfar, M., Mohseni, R., Mortazavi-Tabatabaei, S. A., & Asgharzadeh, S. (2017). NK cell–derived exosomes from NK cells previously exposed to neuroblastoma cells augment the antitumor activity of cyto-kine-activated NK cells. Journal of Immunotherapy 40,265–276. https://doi.org/10.1097/cji.0000000000000179
Sliva, D. (2003). Ganoderma lucidum (Reishi) in cancer treatment. Integrative Cancer Therapies 2,358–364. https://doi.org/10.1177/1534735403259066
Smyth, M.J., Crowe, N.Y., & Godfrey, D.I. (2001). NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. International Immunology 13(4),459–463. https://doi.org/10.1093/intimm/13.4.459
Smyth, M.J., Thia, K.Y., Street, S.E., MacGregor, D., Godfrey, D.I., & Trapani, J.A. (2000). Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. The Journal of Experimental Medicine 192(5),755–760. https://doi.org/10.1084/jem.192.5.755
Sohretoglu, D., & Huang, S. (2018). Ganoderma lucidum polysaccharides as an anticancer agent. Anticancer Agents in Medicinal Chemistry-Anti-Cancer Agents 18(5),667–674. https://doi.org/10.2174/1871520617666171113121246
Sonar, S., & Lal, G. (2015). Role of tumor necrosis factor superfamily in neuroinflammation and autoimmunity. Frontiers in Immunology 6,364. https://doi.org/10.3389/fimmu.2015.00364
Spits, H., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J. P., Eberl, G., Koyasu, S., Locksley, R. M., McKenzie, A. N., & Mebius, R. E. (2013). Innate lymphoid cells—a proposal for uniform nomenclature. Nature Reviews Immunology 13,145–149. https://doi.org/10.1038/nri3365
Stamets, P. (2011). Growing gourmet and medicinal mushrooms. Clarkson Potter/Ten Speed Press.
Sullivan, R., Smith, J.E., & Rowan, N.J. (2006). Medicinal mushrooms and cancer therapy: Translating a traditional practice into Western medicine. Perspectives in Biology and Medicine 49(2),159–170. https://doi.org/10.1353/pbm.2006.0034
Swallah, M. S., Bondzie-Quaye, P., Wu, Y., Acheampong, A., Sossah, F.L., ElSherbiny, S.M., & Huang, Q. (2023). Therapeutic potential and nutritional significance of Ganoderma lucidum – a comprehensive review from 2010 to 2022. Food & Function 14,1812–1838. https://doi.org/10.1039/D2FO01683D
Takeda, K., Smyth, M.J., Cretney, E., Hayakawa, Y., Kayagaki, N., Yagita, H., & Okumura, K. (2002). Critical role for tumor necrosis factor–related apoptosis-inducing ligand in immune surveillance against tumor development. The Journal of Experimental Medicine 195,161–169. https://doi.org/10.1084/jem.20011171
Thorburn, A. (2004). Death receptor-induced cell killing. Cellular Signalling 16(2),139–144. https://doi.org/10.1016/j.cellsig.2003.08.007
Topham, N.J., & Hewitt, E.W. (2009). Natural killer cell cytotoxicity: How do they pull the trigger? Immunology 128,7–15. https://doi.org/10.1111/j.1365-2567.2009.03123.x
Trapani, J.A., & Smyth, M.J. (2002). Functional significance of the perforin/granzyme cell death pathway. Nature Reviews Immunology 2,735–747. https://doi.org/10.1038/nri911
Trzonkowski, P., Szmit, E., Myśliwska, J., Dobyszuk, A., & Myśliwski, A. (2004). CD4+ CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction. Clinical Immunology 112(3),258–267. https://doi.org/10.1016/j.clim.2004.04.003
Vetvicka, V., & Vetvickova, J. (2014). Natural immunomodulators and their stimulation of immune reaction: True or false? Anti-cancer Research 34(5),2275–2282.
Wachtel-Galor, S., Yuen, J., Buswell, J.A., & Benzie, I.F.F. (2011). Ganoderma lucidum (Lingzhi or Reishi): A Medicinal Mushroom. In: Benzie I.F.F., Wachtel-Galor S., editors. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd ed. Boca Raton (FL): CRC Press/Taylor & Francis.
Wang, L., Li, J.-Q., Zhang, J., Li, Z.-M., Liu, H.-G., & Wang, Y.-Z. (2020). Traditional uses, chemical components and pharmaco-logical activities of the genus Ganoderma P. Karst.: A review. RSC Advances 10(69),42084–42097. https://doi.org/10.1039/d0ra07219b
Wang, L., Zheng, S., Liu, Y., Ji, Y., Liu, X., Wang, F., & Li, C. (2024). A nanozyme multifunctional platform based on iron-doped carbon dots derived from Tibetan Ganoderma lucidum waste for glucose sensing, anti-counterfeiting applications, and an-ticancer cell effect. Talanta 276,126262. https://doi.org/10.1016/j.talanta.2024.126262
Wang, M., & Yu, F. (2022). Research progress on the anticancer activities and mechanisms of polysaccharides from Ganoderma. Frontiers in Pharmacology 13,891171. https://doi.org/10.3389/fphar.2022.891171
Willard, T. (1990). Reishi mushroom: Herb of spiritual potency and medical wonder. Issaquah, Washington: Sylvan Press.
Xing, J.-H., Sun, Y.-F., Han, Y.-L., Cui, B.-K., & Dai, Y.-C. (2018). Morphological and molecular identification of two new Ganoderma species on Casuarina equisetifolia from China. MycoKeys 34,93-108. https://doi.org/10.3897/mycokeys.34.22593
Yin, Z., Zhang, J., Qin, J., Guo, L., Guo, Q., Kang, W., Ma, C., & Chen, L. (2024). Anti-inflammatory properties of polysaccharides from edible fungi on health-promotion: A review. Frontiers in Pharmacology 15,1447677. https://doi.org/10.3389/fphar.2024.1447677
Yokoyama, W.M., Kim, S., & French, A.R. (2004). The dynamic life of natural killer cells. Annual Review of Immunology 22,405–429. https://doi.org/10.1146/annurev.immunol.22.012703.104711
Youguo, C., Zongji, S., & Xiaoping, C. (2009). Modulatory effect of Ganoderma lucidum polysaccharides on serum antioxidant enzymes activities in ovarian cancer rats. Carbohydrate Polymers 78(1),258–262. https://doi.org/10.1016/j.carbpol.2009.04.017
Zhang, H., Wang, L., Chan, Y.W., Cho, W.C., Zuo, Z., & To, K.K. (2025). Recent advances in the use of Ganoderma lucidum and Coriolus versicolor mushrooms to enhance the anticancer efficacy of EGFR-targeted drugs in lung cancer. Pharmaceutics 17(7),917. https://doi.org/10.3390/pharmaceutics17070917
Zhang, X.-F., Liu, Z.-G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applica-tions, and therapeutic approaches. International Journal of Molecular Sciences 17(9),1534. https://doi.org/10.3390/ijms17091534
Zhong, J., Fang, L., Chen, R., Xu, J., Guo, D., Guo, C., Guo, C., Chen, J., Chen, C., & Wang, X. (2021). Polysaccharides from sporoderm-removed spores of Ganoderma lucidum induce apoptosis in human gastric cancer cells via disruption of autophagic flux. Oncology Letters 21,425. https://doi.org/10.3892/ol.2021.12686